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Coulomb Blockade of a Mesoscopic RLC Circuit
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The quantum theory of the mesoscopic RLC circuit and the condition for Coulomb
blockade are given by using canonical quantization and a unitary transformation from
the classical equation of motion. Our results show that there is a threshold voltage
eT in the circuit. The threshold voltage is related not only to the junction capacitance
and inductance, but also to the resistance of the circuit. Generally speaking, the larger
the resistance, the larger the threshold voltage. This clarifies the phenomenon of the
Coulomb blockade of the dissipative mesoscopic circuit.

KEY WORDS: dissipative mesoscopic RLC circuit; coulomb blockade; threshold
voltage.

1. INTRODUCTION

Mesoscopic physics deals with the frontiers between classical and quantum
physics. Phenomena such as persistent current, Coulomb blockade, magnetoresis-
tance fluctuations, and other, are currently studied in this area (Allahverdyan and
Nieuwenhuizen, 2002; Flores, 2002). With the rapid development of nanophysics
and nanoelectronics, the size of electric devices are gradually becoming smaller
and, in the future, are expected to approach nanometer scale. Mesoscopic ex-
pressions for electric devices such as capacitance and inductance are formulated.
When the scale of fabricated electric materials reaches a characteristic dimension,
namely, Fermi wavelength, the quantum mechanical properties of mesoscopic
physics become important, since the charge carriers such as electrons exhibit quan-
tum properties while the application of classical mechanics fails. Many researches
in the quantum effect of the mesoscopic circuit have been done (Fan and Pan,
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1998; Ji and Lei, 2002; Wangt al, 2001; Zhanget al, 1998; Zhanget al,
2001).

Very recently, new effects have been predicted to arise in ultrasmall tunnel
junctions with capacitanc€, such as the charging energy of a single electron
€’/2C, which exceeds the characteristic enekg¥ of thermal fluctuations. Sim-
ple energy considerations suggest that the tunneling of a single electron is com-
pletely blocked when the junction capacitor holds a charge lesseitzam\ large
amount of experimental data exists that seems to support the theoretical ideas of
the Coulomb blockade of tunneling (Li and Chen, 1996a,b; Wetngl., 2000;

Yu and Liu, 1998). Undoubtedly, quantum effects of a mesoscopic circuit must
be considered in the tunneling process of electrons where capacitors are consid-
ered tunnel junction. Jt al. has studied the effect caused by a single electron
crossing a tunnel, and the results show that when an electron crosses a mesoscopic
capacitor that is linked by atoms, because of the effect of Coulomb force there
exists Coulomb Gap (&t al,, 2002c). That is to say: when the external voltage

is lower than certain threshold voltalye, the tunnel current equals zero because

of the effect of Coulomb force; when the external voltage is much higher than
the threshold voltag®y, the tunnel current is in direct proportion to the external
voltage; with an external constant current source supply, the circuit will undergo
Single Electron Tunnel Oscillation (SET Oscillation).

Based on the discreteness of electric charge, Li and @hahhave studied
the quantum fluctuations of the charge and current in a nondissipative mesoscopic
circuit (Li and Chen, 1996a,b). Their results show that the Coulomb blockade
exists, and point out that the Coulomb blockade is relative not only to the junction
capacitance, but also to inductance of the circuit. The electromotive foroby
takes discrete values under adiabatic approximation. However, they do not consider
the influence of dissipation on the Coulomb blockade of the capacitance tunnel
junction.

In this paper, we study the quantum mechanical effects of a dissipative meso-
scopic RLC circuit by using canonical quantization and a unitary transformation
from the classical equation of motion. We discuss the influence of dissipation on
the Coulomb blockade. Our results are in good agreement with the experimental
data.

2. DIAGONALIZING THE HAMILTONIAN
The classical kinetic equation of a RLC circuit is
Lg + Rq+ C g = (1), 1)

wherelL, C, andR are the inductance, capacitance, and resistance, respectively.
¢(t) is the external voltage sourag(t) is charge that is regarded as a coordinate of
the system. The generalized current is defineg(8s= L. As everyone knows,
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the resistance of a circuit is the result of collisions between crystal lattice and
electrons. And the crystal lattice oscillation is equivalent to the movement of
phonons. So, in fact, the mesoscopic RLC circuit can be equal to an interactive
system of an electromagnetic harmonic oscillator and the environment bath of
the lattice oscillators (Jet al., 2002d). In this work, it is easy to confirm that
the coordinaté] and momentunp of a mesoscopic dissipative circuit are a pair

of linear Hermitian operators and satisfy the commutation relatipid] =i h.

In the present work, therefore, following the standard quantization principle, we
guantize§ and p. We assume that the following commutation relation is valid

[G, Pl =ih. )

We consider the adiabatic approximation so #{#} is considered as a con-
stants. The Hamiltonian of this system is

. 1 1
Ho= —p? + —§° pg + §p) + Ge.
0= P+ =0 + B(PG +q4p) + ge 3

B = R/L. One can check that Eg. (3) is a Hermitian operator. We introduce the
unitary transformation

A R,
= = 4
S exp{| th } (4)
and use the formula
¢ABe A = B + A[A, B] + %AZ[A, [A B+ -

From Egs. (3) and (4), we get

-1 1 1
H:_"Z _L2"2 /2 ", 5
oL P oLt + ood 4 Ge (5)
where
1 R?
2
= — 6
@ =lc L2 ©)

Now H represents the harmonic oscillator exactly. In the previous work, most
authors considered the electric charge continuous. As a matter of fact, the electric
charge is discrete and this must play an important role in the theory of quantized
mesoscopic circuits. To take account of the discreteness of electric charge, we
impose that the eigenvalues of the self-adjoint opergttake discrete values,
namely

4lg) = maq), (7)

wherem € z (set of integers)ge = 1.602x 10°%° C, the elementary electric
charge;|q) stands for eigenstates of electric charge for the circuit. So we can
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define minimum shift operators

A e .
= e — s

Q- exn(i%9)
from which the following commutation relations follow:G[Q] = —geQ,
[4, 071 = 0", 00" = " = 1. These relations can determine the struc-
ture of the whole Fock space. Similar to the known results, we can define the right
and left discrete derivative operators as follows:
Q-1 - 1-Q"

e ’ Qe — .

Oe Oe

Obviouslyvqt = —gqe. Consequently, one can obtain the self-adjoint “momen-
tum” operators

Vaq

. h _ h o
p:—IE[qu-f-qu] :_Z_Qe(Q_Q )

Regarding the discreteness of electric charge, the Schrodinger equation for a dis-
sipative mesoscopic circuit takes the form

g2

h2 2 A+ 1 2 & 2 i
[—E(QJrQ -2+ 5Lo (q+m)]|qJ>—(E+m>|\w. ®)

3. COULOMB BLOCKADE
Due to the discreteness of electric charge, Eq. (7) must hold: i.e.
e = mgLo?, 9)

for m an integer. Equation (9) suggests that there exists the Coulomb blockade
in a mesoscopic dissipative RLC circuit. We can see that the electromotive force

¢ only takes discrete values, given by Eq. (9). The discrete value of the external
voltage reflects the physical nature of the Coulomb blockade in a mesoscopic circuit
and the phenomenon of the Coulomb blockade produced by the quantization of
charges. Supposing capacitance and inductance are both constants, from Eq. (9),
the electromotive force is only dependent on the size of the resistance. When

m = 1, the external voltage is

RZ 1
er =0 (T - E) , (10)
et is a defined threshold voltage that is caused by the system Coulomb force. It
indicates that there must exist an original threshold voltag overcome the

Coulomb force when the electrons transfer through the junction of the capacitor.
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And if the external voltage is lower than the original threshold voltage, the current
crossing junction equals zero, thus, Coulomb blockade phenomenon appears.

The threshold voltage (or Coulomb Gap) is relative not only to the junction
capacitance and inductance, but also to resistance of the circuit. The results indicate
that the resistances in the mesoscopic circuit play an extremely important role
in the observation of the Coulomb blockade. Generally speaking, the larger the
resistance, the larger the threshold voltage is, with the phenomenon of the Coulomb
blockade of the dissipative mesoscopic circuit clearing up. WiRes: LC, the
phenomenon of the Coulomb blockade disappears. There is no doubt that the
phenomenon of the Coulomb blockade can be observed easier for an overdamping
RLC circuit than underdamping. The resistance value is small; it is difficult to
observe the Coulomb blockade.

4. DISCUSSION
According to the relations (Li and Chen, 1996a,b)

4 h Oe ) ] ,
cos —1]-8(p—p),

@ [ (hp (p—p)
3 82
Ce a—pz
The Schrodinger Eg. (8) in the representation is

[Ealo(3) 5 D e )

The solution of Mathieu equation above is

Uit (p)) = ca ( q; P, k)

(P'1(Vg, — V)| p) =

(p'16%p) = — 8(p—p).

or
Tia(P) =sa. (5 % 2P k).
1+1 + 2h"’
wherek = (-2"-)2 “4+" and “—" denote the even and odd parity solutions, respec-

gLw
tively. HereCgq(z, k) and Se(z, k) are periodic Mathieu functions. In this case,
there exist infinitely many eigenvalu¢g } and{b} (| =0, 1, 2,...) that are not
identically equal to zero. Then, the energy spectrum is

N q RZ h2 62
Ef==(Z2-— —
'~ 8 (C ) ()+ Q2L 2Le?
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~ @[l R h? €?
El =22 )bk + > — ——.
1+1= g <c L) P+ o 5

In consideration of the conditioks<« 1, the quantum fluctuations of electric
current are calculated as following expression in the ground state

(p) =0. (11)
h2 3 / h2\?
2 —_— e —_—— . .« ..
<p>_2qg 1-3 ( ng> + . (12)

Equation (11) indicates that the average value of the current is zero whether the
circuitis in the ground state. And Eq. (12) shows that there exists current quantum
zero point fluctuation.

5. CONCLUSION

In the above discussion, we studied the quantization of a dissipative meso-
scopic RLC circuit. Taking the charge’s discreteness into account, we proposed
a quantum theory for the mesoscopic electric circuit. The Schrodinger equation
for coupling circuit can become the well-known Mathieu equation. The Coulomb
blockade has been addressed in this mesoscopic dissipative circuit. There is no
question that the phenomenon of the Coulomb blockade can be more easily ob-
served for an overdamping than an underdamping RLC circuit.

REFERENCES

Allahverdyan, A. E. and Nieuwenhuizen, T. M. (2002). Testing the violation of the Clausius inequality
in nanoscale electric circuiRhysical Review B6(11), 115309.

Fan, H. Y. and Pan, X. Y. (1998). Quantization and squeezed state of two L-C circuits with mutual
inductanceChinese Letterd5(9), 625.

Flores, J. C. (2002). Mesoscopic circuits with charge discreteness: Quantum current magnification for
mutual inductance®hysical Review B6(15), 153410.

Ji, Y. H. and Lei, M. S. (2002). Squeezing effects of a mesoscopic dissipative coupled titeuita-
tional Journal of Theoretical Physiesl(7), 1339.

Ji, Y. H, Lei, M. S., and Ouyang, C. Y. (2002a). Time dependence of the average charge and current
in a dissipative mesoscopic circuthinese Physic$1(2), 163.

Ji, Y. H., Luo, H. M., and Lei, M. S. (2002b). The squeezing effect in a mesoscopic RLC circuit.
Communication in Theoretical Physi88(5), 611.

Ji, Y. H., Luo, H. M., Ouyang, C. Y., and Lei, M. S. (2002c). Shapiro effect in mesoscopic LC circuit.
Chinese Physic$1(7), 720.

Wang, J. S., Feng, J., and Zhan, M. S. (2001). Quantum fluctuations of a non-dissipative mesoscopic
inductance coupling circuit in a displaced squeezed Fock fhatesics Letters 281, 341.

Wang, J. S, Liu, T. K., and Zhan, M. S. (2000). Coulomb blockade and quantum fluctuations of
mesoscopic inductance coupling circhysics Letters 276, 151.



Coulomb Blockade of a Mesoscopic RLC Circuit 1771

Yu, Z. X. and Liu, Y. H. (1998). Coulomb blockade and quantum fluctuation of a non-dissipative
mesoscopic capacitance coupling circuit with soulrernational Journal of Theoretical Physics
37(40), 1217.

Zhang, S., Choi, J. R., Um, C. I, and Yeon, K. H. (2001). Quantum uncertainties of mesoscopic
capacitance coupled circuRhysics Letters 89, 257.

Zhang, M. Z., He, L. S., and Zhou, S. K. (1998). A quantum theory of an RLC circuit with a source.
Physics Letters 244, 196.



